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The paper presents a robust implementation of the restoring force method, which is
applied to the dynamic identification of two simple prestressed cable structures. The system
parameters identified from two different types of dynamic experiments are found to be
generally in good agreement with the parameters calculated from direct static
measurements. Hence, general conclusions are reached on optimal identification strategies
for lightweight non-linear structures.
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1. INTRODUCTION

This paper is concerned with the experimental identification of geometrically non-linear
structures. The method used is generally known as ‘‘restoring force surface method’’ [1]
or ‘‘force state mapping’’ [2] which has a direct physical meaning, is easy to implement,
and can be used in a variety of different situations. Previous applications have been
focussed on systems whose non-linearities are not known a priori [1, 3–5]. In this paper,
the restoring force surface method is applied to a class of structures whose geometrically
non-linear properties are known, and hence the coefficients of the non-linear system of
equations of motions can be calculated from direct measurements. For such systems
the identification technique can be validated by comparing the directly measured
system parameters to the system parameters estimated by considering restoring force
functions.

The first structure that has been investigated consists of a small rigid element attached
to the middle of a prestressed, straight steel cable, which was excited in a transverse
direction. This structure can be modelled as a single-degree-of-freedom (SDOF) system.
For small displacements, the cable behaves as a linear spring whose stiffness is proportional
to the level of prestress. As the excitation amplitude increases a cubic non-linearity
appears, of magnitude proportional to the axial stiffness of the cable. The second structure
that was investigated consists of two parallel, prestressed cables connected by a slender,
rigid element whose out-of-plane motion can be modelled in terms of two degrees of
freedom. The geometrically non-linear behaviour of these two structures is typical of cable
structures in general, see references [6, 7].

For each of these structures, the correct coefficients of the equations of motion can be
obtained from direct static measurements, and can thus be compared to the coefficients
estimated by means of the restoring force method, without making use of any information
on the special features of the particular system. This comparison is carried out by
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estimating best-fit system parameters for a gradually increasing number of non-linear terms
in the equations of motion. For each set of parameters, the response of the system is
simulated in order to estimate the corresponding error with the experimental data. It is
found that, in general, the inclusion of terms of the correct order leads to significant error
reductions, but that a residual error exists due to noise in the experimental data.

The layout of this paper is as follows. The next section gives a brief description of the
theory behind the restoring force method, followed by an explanation of the way in which
the set of system parameters can be identified from experimental data. In section 3 the
theoretical models are derived for the two cable systems that are investigated, from which
the key experimental parameters are selected. In section 4 the identification experiments
and the analysis of the experimental data leading to the identification of system parameters
are presented. Section 5 contains discussion of the results obtained from this study and
concludes the paper.

2. THE RESTORING FORCE METHOD

The equation of motion of a SDOF non-linear system can be written, by an obvious
extension of the standard linear case, in the form

mÿ+ s
j

cj ẏj + s
j

kj yj =F, (1)

where m is the mass, y, ẏ and ÿ its displacement, velocity and acceleration, and F is the
external force. The coefficients c1, k1 are respectively the standard viscous damping and
stiffness coefficients, while c2, k2, etc., are the coefficients of higher order damping and
stiffness terms. Equation (1) is valid on the assumption that there is neither coupling
between velocity and displacement, nor between stiffness terms of different order.
However, the formulation presented in this paper could be easily modified to include such
effects, if required.

With equivalent assumptions, equation (1) may be extended to multi-degree-of-freedom
(MDOF) systems where, upon assuming coupling between displacements only, the ith
equation of motion may be written as

mi ÿi + s
j

ci j ẏ j
i + s

j

ki j y j
i + s

j$ i,l,m

ki jlm yl
iym

j =Fi . (2)

Other terms, such as displacement–velocity coupling could be included and the final
form of the equation of motion may include all possible terms of a certain type, or a
reduced number of terms that have been selected according to some special features of the
particular problem that is analysed.

If the mass associated with degree-of-freedom i is known, then the corresponding
restoring force is defined as follows, from equation (2):

fi =Fi −mi ÿi = s
j

ci j ẏ j
i + s

j

ki j y j
i + s

j$ i,l,m

ki jlm yl
iym

j . (3)

According to equation (3), fi is a function of yi and ẏi , and also of all the other
displacements DOFs. If, however, fi is found to be insensitive to the other DOFs and hence
it is a function of yi and ẏi only, then it can be plotted over the phase plane (yi , ẏi ) and
this plot is known as a force state map. Obviously, for a linear SDOF system the force
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state map is a plane whose slopes with respect to displacement and velocity are respectively
the linear stiffness and viscous damping coefficients. System non-linearities will distort the
force state map. Once the number of parameters to be considered has been decided, their
values can be estimated by conducting suitable experiments and by imposing a least
squares fit between the measured force state map and its analytical expression.

An equivalent procedure can be followed when the mass mi is not known and the
coupling between different DOFs does not allow the plotting described above. In such
cases, all unknown system parameters, including mi , are estimated by a least squares fit
between the measured excitation force Fi and its predicted value. It is this more general
case that is considered in the next section.

2.1. 

The idea is to take a series of measurements of displacement, velocity and acceleration
of each DOF, together with the applied force, at several time steps, but measuring all of
these quantities simultaneously is usually impractical. Hence, the normal practice is to
measure the force and a limited number of states, and to compute the corresponding values
of the remaining states. The approach taken in this work is to measure acceleration at
regular time steps, and to obtain velocity and displacement by integration. Both time
domain and frequency domain integration have been considered [8]. Time domain
integration requires the use of high pass filters to remove low frequency noise which would
otherwise be amplified at each integration step. For single frequency excitation, this
technique has been found to be less reliable than the alternative technique. Hence, the
integrated signals are obtained from the Fourier transform of ÿ,

ẏ(v)= ÿ(v)/jv, y(v)=−ÿ(v)/v2,

where v=2p×frequency, and j=z−1. These relationships are used at all frequencies
except v=0, where it is assumed that y(0)= ẏ(0)=0.

Once the states of the system and the corresponding force inputs are known, the
identification process can begin. Consider, for example, a SDOF system that, in addition
to the standard linear terms, is to be modelled by including quadratic and cubic stiffness
terms. Thus, equation (1) gives

mÿ+ c1 ẏ+ k1 y+ k2 y2 + k3 y3 =F. (4)

Assume that s data samples have been taken, where the nth sample includes ÿn , ẏn , yn ,
and Fn . Substituting these values into equation (4) yields

mÿn + c1 ẏn + k1 yn + k2 y2
n + k3 y3

n =Fn , (5)

which is a linear equation in the five unknowns m, c1, k1, k2, k3. Considering all samples
one obtains the following system of linear equations:
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ÿ2 ẏ2 y2 y2
2 y3

2 m F2

· · · · · · · · · · c1 · ·

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

· · · · · · · · · · k1 = · · . (6)

· · · · · · · · · · k2 · ·
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The matrix form of equation (6) is

Ax= b, (7)

where x is a (5×1) column matrix containing the system parameters to be determined,
A is the (s×5) matrix containing the states of the system (and their powers), and b is a
column matrix (s×1) containing the measured force.

If the mass m is known, b is replaced by the restoring forces and the first column of
A is removed.

Equation (7) is a largely over-determined system of equations that can be solved by least
squares in order to minimize the errors induced by signal noise, numerical integration, etc.
To guard against possible ill-conditioning (e.g., caused by the excitation amplitude being
too small for a particular type of non-linearity to show up clearly), one computes the
singular value decomposition of A [9].

Let sii be the ith singular value, and ui , vi the corresponding left and right singular
vectors. Let r be the number of non-zero singular values. The threshold below which a
singular value is deemed to be zero is set on the basis of machine precision as well as the
level of noise present in the data [9].

The least squares solution of equation (7) is given by

x̂= s
r

i=1

ui · b
sii

vi . (8)

The accuracy of the estimated parameters is assessed by means of a normalized root
mean square error, which is defined as

e= > Ax̂− b >/> b >=X s
s

i= r+1

(ui · b)2> > b > . (9)

The magnitude of e also acts as an indicator of the number of system parameters required
to fit the experimental data. The number of terms in the model is increased until e falls
below a preset threshold.

3. EXPERIMENT DESIGN

The first experiment is an investigation of the behaviour of a simple cable structure
consisting of a small rigid mass attached to the mid-span of a single cable stretched between
two fixed points, as shown in Figure 1. When displaced in a lateral direction, this system
exhibits geometric non-linearity. Consider a cable of length 2L and axial stiffness EA,

Figure 1. Set-up of first experiment.
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Figure 2. SDOF cable structure subject to a small displacement y, schematic layout.

subject to an initial tension T. If a small lateral displacement is imposed to the mid-point
of this cable (see Figure 2) its tension increases by

dT=EA(dL/L)1EA(y2/2L2). (10)

Hence, the static force required to impose a lateral displacement y is

2(T+ dT) sin a1 2(T+EAy2/2L2)y/L=(2T/L)y+(EA/L3)y3 (11)

According to equation (11) the lateral stiffness of this cable is the sum of a linear term
and a cubic term, and hence the equation of motion in the transverse direction can be
written as

mÿ+ c1 ẏ+ k1 y+ k3 y3 =F, (12)

where k1 =2T/L and k3 =EA/L3.
Numerical simulations based on equation (12) have been used to design an experiment

where a sufficient amount of non-linear behaviour is produced with a maximum
displacement amplitude of 25 mm, due to physical limitations of the available shaker.
Thus, a stainless steel cable with diameter of 0·8 mm was chosen (EA=30 kN) and it was
stretched over two knife-edge supports to ensure consistent end conditions. Both ends of
the cable were coiled around guitar machine heads, to allow a fine adjustment of cable
tension. The cable tension, measured with a tension transducer [10] before clamping the
block to the cable, was 45·3 N. A rigid block consisting of two Al-alloy parts was clamped
on the cable, thus forming a cube with side length of 30 mm. The distance between a
support and the side of the cube was L=0·13 m. A PCB miniature accelerometer and a
force sensor were mounted on either side of this block whose mass, including transducers,
was 0·104 kg. This set-up is shown in Figure 1.

The coefficients m, k1, and k3 that appear in equation (12) have been estimated from
the physical dimensions and properties given above; see Table 1.

The second experiment is an investigation of the behaviour of a flat grid structure
consisting of an Al-alloy ‘‘rigid’’ beam clamped to two parallel cables like those used in
the first experiment, mounted at a distance of 2W. The vibration of the beam in the

T 1

System parameters for SDOF system

Parameter Direct measurement Shaker test Free decay test

m (kg) 0·104 0·105 —
c (Ns/m) — 0·44 0·28
k1 (N/m) 6·98×102 7·01×102 6·97×102

k3 (N/m3) 1·33×107 1·37×107 1·16×107
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Figure 3. Idealized 2 DOF system.

direction perpendicular to the plane of the cables can be modelled in terms of a 2 DOF
system consisting of a rigid lamina, representing the beam, supported by two non-linear
springs, representing the cables, as shown in Figure 3. The stiffness relation for each spring
is analogous to equation (11) and hence the static force required to impose a pure
translation y1 is

2[(2T/L)y1 + (EA/L3)y3
1 ]. (13)

Therefore, the translational equation of motion is

m1 ÿ1 + c11 ẏ1 + k11 y1 + k13 y3
1 =F1. (14)

To find the second equation of motion a static rotation y2 is imposed, after imposing
a translation y1. Since the right side and left side springs have stretched by y1 +Wy2 and
y1 −Wy2 respectively, the forces applied to the lamina by these springs are respectively

(2T/L) (y1 +Wy2)+ (EA/L3) (y1 +Wy2)3, (15)

(2T/L) (y1 −Wy2)+ (EA/L3) (y1 −Wy2)3. (16)

Upon taking moments about the centre of the lamina, the couple required for static
equilibrium is found to be

(4TW2/L)y2 + (3EAW2/L3)y2
1y2 + (EAW4/L3)y3

2 =F2 (17)

and hence the rotational equation of motion may be written in the form

m2 ÿ2 + c21 ẏ2 + k21 y2 + k23 y3
2 + k1221 y2

1y2 =F2, (18)

where m2 is the moment of inertia of the lamina, F2 is the externally applied torque,
k21 =4TW2/L, k23 =2EAW4/L3, and k1221 =6EAW2/L3.

As in the first experiment, numerical simulations have been carried out to determine
appropriate system parameters for which reasonable amounts of non-linear behaviour
would be observed. For the same type and length of cable as in the first experiment, the
dimensions of the block were chosen to be 0·12×0·02×0·018 m3, the prestress was set
at 44·2 N, and the distance 2W between the two cables was 0·1 m. The corresponding
theoretical estimates of the coefficients of equations (14) and (18), apart from the damping
coefficients, are given in Table 2.

Two accelerometers were used to record the response. These were placed symmetrically
about the centre of mass, at each end of the Al-alloy block. The translational data was
obtained by averaging the two responses, and the rotational data from their difference.
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T 2

System parameters for 2 DOF system

Parameter Direct measurement Shaker test Free decay test

m1 (kg) 0·202 0·21 —
c11 (Ns/m) — 0·54 0·25
k11 (N/m) 1·31×103 1·34×103 1·30×103

k13 (N/m3) 2·18×107 2·12×107 1·91×107

m2 (kgm2) 3·18×10−4 3·34×10−4 —
c21 (Nms/rad) — 1·25×10−2 8·81×10−4

k21 (Nm/rad) 3·15 3·22 3·04
k23 (Nm/rad3) 1·31×102 1·43×102 1·20×102

k1221 (N/m) 3·27×105 2·87×105 3·60×102

4. IDENTIFICATION TESTS

The response of each cable system was measured for two different types of excitation,
a constant frequency sinusoid of linearly varying amplitude—applied through a pair of
coil-type shakers—and a static imposed displacement. A personal computer fitted with a
National Instruments digital board was used to output the excitation signals, which were
amplified by using PA100 power amplifiers, and to take force and acceleration
measurements. The board operates in a sequential mode, but the time delay between
consecutive channels (5 ms) is sufficiently small that the associated phase error is negligibly
small. Noise effects were removed by applying rectangular windows with a bandwidth of
1 Hz at harmonics of the forcing frequency.

4.1.   

The first test was conducted with an excitation signal consisting of a ramped sine wave
at 8·5 Hz over a total period of 10·24 seconds, with data samples taken at 400 Hz over
the full duration of the test. The force and acceleration response measurements are shown
in Figure 4, while Figure 5 shows the restoring force map where the mass of the system

Figure 4. Force and acceleration measurements.
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Figure 5. Force state map of SDOF system.

has the value obtained by direct measurements. To show the cubic stiffness effects more
clearly, 70% of the linear stiffness has been removed before plotting the data.

The identification method described in section 2 has been applied to the experimental
data, with a gradual increase in the number of system parameters included in the model.
The number of stiffness terms has been varied from 1, linear stiffness, to 10: i.e., including
terms up to k10 y10. Similarly, the number of damping terms has been increased from 0,
no damping, to 10. Figure 6 shows the variation in the corresponding error e. Increasing
the stiffness terms from one to two does not make much difference, because k2 has no
physical basis, but the inclusion of a third term leads to a significant reduction in error.
The inclusion of further terms has practically no effect. The variation of e with the number
of damping terms shows a steep drop when the first term is included, but hardly any
subsequent improvement. Once the physically significant third order stiffness term and first
order damping term have been included in the model, e becomes practically constant; the
residual error can be attributed to signal noise. Hence, the parameters that have been

Figure 6. Error plot for SDOF cable system (shaker test data).
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Figure 7. Restoring force plots for SDOF system: (a) forced vibration; (b) free decay.

estimated are m, c1, k1 and k3 : their values are given in Table 1. Note that both the
estimated mass and stiffness parameters are very close to the expected values. Also note
that the damping coefficient corresponds to a damping ratio of z=2·6% but, at this stage,
there is no reference value to compare it with.

The above results have been obtained by considering the full set of 4096 data points.
In order to investigate the sensitivity of the estimated parameters to different data sampling
strategies, the parameter estimation has been repeated using data samples taken during
the following time periods: (0–5·12 s), (1·28–5·12 s) and (2·56–5·12 s). It has been found
that the coefficients of the linear terms are practically unaffected, and the non-linear terms
are also unaffected if the sampled data covers a sufficiently large range of the restoring
force map. Thus, there are practically no changes if the data spans the range (0–5·12 s),
and the worst result is an increase of k3 by 15% for the range (2·56–5·12 s).

The second test was conducted by applying a vertical static displacement to the mass,
and measuring the free decay response obtained after releasing the mass. Because F=0
in this test, m must be known in order to estimate the system parameters. The parameters
estimated from this test are shown in the last column of Table 1. Again the stiffness
parameters estimated are very close to the values obtained from direct measurement.

Figure 7 shows side views of the force state maps obtained from the two tests. These
plots show clearly that the cubic stiffness effects are more marked in the first test, and hence
the k3 coefficient that is estimated from the shaker test would be expected to be more
accurate. Indeed, this is what is found in Table 1.

Next, consider the damping coefficient. The value of c1 estimated from the first test is
0·44 (z=2·6%) while the value estimated from the second test is 0·28 (z=1·6%). This
discrepancy is due to the added damping associated with the shaker, in the first test, which
has been removed in the free decay test. Hence, the more reliable damping parameter
would be expected to be the second one.

4.2.   

First, the translational mode was investigated. Figure 8(a) shows a plot of restoring force
versus displacement obtained from a forced vibration test with a single shaker applying
a ramped sinusoid at 8·5 Hz to the centre of mass of the beam. Figure 8(b) shows a plot
of restoring force, estimated from acceleration measurements during a free decay test.
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Figure 8. Restoring force plots for translational mode of MDOF system: (a) forced vibration; (b) free decay.

As for the SDOF experiment, the error e has been calculated as a function of the number
of system parameters included in the model; see Figure 9, and the results are similar to
those obtained previously. Again, it is found that the inclusion of stiffness terms up to the
third order and of a single damping term leads to the error being reduced to 0·016. The
initial error, if only linear stiffness and no damping are considered, is 0·08. As in the SDOF
experiment, it is found that little improvement is achieved by considering further terms,
the lowest error being 0·012 when the maximum number of terms are considered. Hence,
it is concluded that a reasonable fit to the experimental data can be obtained by including
the terms m1, c11, k11, and k13 in the system model and the values that are estimated from
the two sets of experimental data are given in Table 2. Note that, as in the SDOF
experiment, the free decay experiment is unable to estimate the mass of the system because
the external force is zero.

To investigate the rotation mode an initial test was carried out with a single shaker
placed at one end of the Al-alloy beam. However, because of the high rotational stiffness
of the two-cable system, only small amplitude rotations were excited and the response was
found to be mainly linear, thus giving poor quality estimation of the non-linear stiffness
terms of the system.

Figure 9. Error plot for MDOF system (translational mode, shaker test).
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Figure 10. Restoring couple plots for rotation mode of MDOF system: (a) forced vibration; (b) free decay.

Therefore, a further set of tests were conducted with two shakers applying excitation
in anti-phase. By varying the excitation amplitude of each shaker separately,
suitable rotation levels were achieved. Free decay tests were also carried out, the system
being released after imposing both a translation and a rotation to the block.

Figure 10 shows plots of the restoring couple obtained from these two tests. Note that,
in analogy with the free decay test of the translation mode, the value of the moment of
inertia of the block has to be known before calculating the values of the restoring couple.

Because of the coupling between rotation and translation modes, the error e depends
on three different types of terms, which makes it impossible to show graphically the
variation of e as the number of each type of terms is varied. Figure 11 shows the variation
of e with the number of direct stiffness terms, i.e., the terms k2j in equation (3), and with
the number of damping terms c2j . The number of coupled stiffness terms is set at 1.

As in the previous cases, the error e bottoms out once the physically meaningful terms
have been included. Note that the effect of including a quadratic stiffness term again has
a negligible effect on reducing the error. This error plot shows that there is little point in
including terms other than m2, c21, k21, k23 (and k1221) in the model of the rotation mode.

Figure 11. Error plot for MDOF system (rotation mode, shaker test).
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Figure 12. Comparison between measured ( ——) and estimated ( – – –) acceleration responses.

Hence, the values of these parameters have been estimated by the identification algorithm
and are given in Table 2.

As a final check on the quality of the estimated parameters, a fourth order Runge–
Kutta integration of the equations of motion was carried out, using the estimated
system parameters, and the measured shaker force as input. The acceleration response
estimated from this procedure practically coincides with the measured acceleration; see
Figure 12.

5. DISCUSSION AND CONCLUSIONS

The main results that have emerged from this study are as follows. First, the
particular implementation of the restoring force method presented in this paper, based
on the singular value decomposition of the experimental data matrix A, is accurate
and reliable. Second, the identification procedure should aim for only a small number
of key system parameters, whose inclusion in the equations of motion yields
substantial reductions in the mis-match between the measured response of the system
and its analytical model. It is pointless to pursue the absolute minimum of the error
function, which is sensitive to noise in the data. Third, it must be ensured that the
experimental data covers a sufficient range to include all expected non-linearities, in
order to fully represent the restoring force map. Fourth, shaker test data tends to
produce more accurate estimates of non-linear stiffness parameters but overestimates
damping. Better estimates of the damping coefficients are obtained from free decay
tests. It is believed that these results will apply to other lightweight systems, with
larger numbers of degrees of freedom.

The next stage in this study will be the application of the identification procedure
established in this paper to the cable-stiffened deployable structures that have been
recently developed by our group. These structures [11] exhibit non-linear dynamic
behaviour, but the main source of non-linearity appears to be energy dissipation at
the joints.
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